1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
| import time from transformers.generation.logits_process import LogitsProcessor from sanic import Sanic from sanic.response import json import asyncio import logging import multiprocessing as mp import threading import uuid from queue import Empty from transformers import AutoTokenizer, AutoModel from cachetools import TTLCache import torch from enum import Enum
app = Sanic('test')
class BaseInferLightWorker:
def __init__(self, data_queue: mp.Queue, result_queue: mp.Queue, model_args: dict, batch_size=16, max_delay=0.1, ready_event=None, max_length: int = 2048, num_beams=1, do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs ) -> None: self.data_queue = data_queue self.result_queue = result_queue self.batch_size = batch_size self.max_delay = max_delay self.logger = logging.getLogger('InferLight-Worker') self.logger.setLevel(logging.DEBUG) self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p, "temperature": temperature, "logits_processor": logits_processor, **kwargs} self.load_model(model_args)
if ready_event: ready_event.set()
def run(self): self.logger.info('Worker started!') while True: data, task_ids = [], [] since = time.time() for i in range(self.batch_size): try: d = self.data_queue.get(block=True, timeout=self.max_delay) task_ids.append(d[0]) data.append(d[1]) self.logger.info('get one new task') except Empty: pass if time.time() - since >= self.max_delay: break if len(data) > 0: start = time.perf_counter() batch = self.build_batch(data) results = self.inference(batch) end = time.perf_counter() time_elapsed = (end - start) * 1000 self.logger.info(f'inference succeeded. batch size: {len(data)}, time elapsed: {time_elapsed:.3f} ms') for (task_id, result) in zip(task_ids, results): self.result_queue.put((task_id, result))
def build_batch(self, requests): raise NotImplementedError
def inference(self, batch): raise NotImplementedError
def load_model(self, model_args): raise NotImplementedError
@classmethod def start(cls, data_queue: mp.Queue, result_queue: mp.Queue, model_args: dict, batch_size=16, max_delay=0.1, ready_event=None): w = cls(data_queue, result_queue, model_args, batch_size, max_delay, ready_event) w.run()
class InferStatus(Enum): SUCCEED = 0 TIMEOUT = 1
class InferResponse:
def __init__(self, status: InferStatus, result) -> None: self.status = status self.result = result
def succeed(self): return self.status == InferStatus.SUCCEED
class LightWrapper:
def __init__(self, worker_class, model_args: dict, batch_size=16, max_delay=0.1) -> None: self.logger = logging.getLogger('InferLight-Wrapper') self.logger.setLevel(logging.INFO)
self.result_cache = TTLCache(maxsize=10000, ttl=5)
self.mp = mp.get_context('spawn') self.result_queue = self.mp.Queue() self.data_queue = self.mp.Queue()
self.logger.info('Starting worker...') worker_ready_event = self.mp.Event() self._worker_p = self.mp.Process(target=worker_class.start, args=( self.data_queue, self.result_queue, model_args, batch_size, max_delay, worker_ready_event ), daemon=True) self._worker_p.start()
is_ready = worker_ready_event.wait(timeout=30) if is_ready: self.logger.info('Worker started!') else: self.logger.error('Failed to start worker!')
self.back_thread = threading.Thread( target=self._collect_result, name="thread_collect_result") self.back_thread.daemon = True self.back_thread.start()
def _collect_result(self): self.logger.info('Result collecting thread started!') while True: try: msg = self.result_queue.get(block=True, timeout=0.01) except Empty: msg = None if msg is not None: (task_id, result) = msg self.result_cache[task_id] = result
async def get_result(self, task_id): while task_id not in self.result_cache: await asyncio.sleep(0.01) return self.result_cache[task_id]
async def predict(self, input, timeout=6) -> InferResponse: task_id = str(uuid.uuid4())
self.data_queue.put((task_id, input)) try: result = await asyncio.wait_for(self.get_result(task_id), timeout=timeout) except asyncio.TimeoutError: return InferResponse(InferStatus.TIMEOUT, None)
return InferResponse(InferStatus.SUCCEED, result)
class InvalidScoreLogitsProcessor(LogitsProcessor): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor: if torch.isnan(scores).any() or torch.isinf(scores).any(): scores.zero_() scores[..., 20005] = 5e4 return scores
class MyWorker(BaseInferLightWorker):
def load_model(self, model_args):
self.tokenizer = AutoTokenizer.from_pretrained(model_args['model'], trust_remote_code=True) self.model = AutoModel.from_pretrained(model_args['model'], trust_remote_code=True).half().cuda() self.device = torch.device('cuda') return
def build_batch(self, requests):
prompts = [] for query, user_history in requests: if not user_history: prompt = query else: prompt = "" for i, (old_query, response) in enumerate(user_history): prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response) prompt += "[Round {}]\n问:{}\n答:".format(len(user_history), query) prompts.append(prompt) input_ids = self.tokenizer(prompts, return_tensors="pt", padding=True) input_ids = input_ids.to(self.device) return [input_ids, requests]
@torch.no_grad() def inference(self, input_ids): input_ids, requests = input_ids outputs = self.model.generate(**input_ids, **self.gen_kwargs) result = []
for output, input_id, (query, user_history) in zip(outputs, input_ids["input_ids"], requests): out = output.tolist()[len(input_id):] response = self.tokenizer.decode(out) response = response.strip() response = response.replace("[[训练时间]]", "2023年") user_history = user_history + [(query, response)] result.append([response, user_history])
return result
@app.post('/batch_predict') async def batched_predict(request): history = request.app.ctx.history now = time.time() openid = request.json['openid'] if openid not in history: user_history = [] else: user_history = history[openid]["history"] user_last_time = history[openid]["user_last_time"]
if now - user_last_time > 600: user_history = []
while len(user_history) > 5 or sum([len(x) + len(y) for x, y in user_history]) > 1024: user_history = user_history[1:] dummy_input = [request.json['text'], user_history] response = await request.app.ctx.wrapped_model.predict(dummy_input, timeout=20)
if not response.succeed(): return json({'output': None, 'status': 'failed'})
history[openid] = {"history": response.result[1], "user_last_time": now} request.app.ctx.history = history return json({'output': response.result[0]})
config = { 'model': "/sdk/pre_models/chatglm-6b-int4", 'use_cuda': True }
@app.listener('before_server_start') async def init(app, loop): history = {}
wrapped_model = LightWrapper(MyWorker, config, batch_size=10, max_delay=0.05) app.ctx.wrapped_model = wrapped_model app.ctx.history = history
if __name__ == '__main__': app.run(port=5008)
|